If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+160t+18
We move all terms to the left:
0-(-16t^2+160t+18)=0
We add all the numbers together, and all the variables
-(-16t^2+160t+18)=0
We get rid of parentheses
16t^2-160t-18=0
a = 16; b = -160; c = -18;
Δ = b2-4ac
Δ = -1602-4·16·(-18)
Δ = 26752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26752}=\sqrt{64*418}=\sqrt{64}*\sqrt{418}=8\sqrt{418}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{418}}{2*16}=\frac{160-8\sqrt{418}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{418}}{2*16}=\frac{160+8\sqrt{418}}{32} $
| 7e-18+5e=-2e=24 | | (0.3)x-1.8=x-1.16 | | 28x=12x | | 22+38+2x=100 | | i/5=-10+5 | | 18=-3h | | 7/6x=12 | | 21=2s+5 | | 1.8(x-5)=1/4x+4.4 | | -12s-27+3(4s+11)=0 | | -a+1=16 | | -m+3=0 | | -3+9=q | | 2o+6=10 | | 6^x+1=216^x | | 4y/7=9 | | 36=x2/3 | | 2.5g+2=14.50 | | 2(4x-3)=6(2x+3 | | 8r-7=3r-12 | | 3x-10=5x+-50 | | 6x2+18x+1=0 | | 5(4e+7)=135 | | 6z+4=5z-8 | | 7/2x-2/x+1=1/4 | | 4x+7/3x=-2 | | 13x=6000 | | (3x+5)-0.5=13.5 | | 1x1=69 | | 10i-4=5i-4 | | 4r^2+18r+7=0 | | B/2b-(6+6b)=-2/7 |